MATH 5061 Lecture 11 Mar 31 fixingendpts r Recall ⁸ Ca ^b Mn^g geodesic ie E'co ^o VvariationVs Is 2ndvariation for ^E ^V 34 ⁰ V field ⁷ ^g ^p^T ^T to ^b E6 fabflq.VN CRN Vir Ddt y index f Cq ^V Og^w CRCr vn ^V ^d form It V W ^s ^m look at the kernel of this symmetric bilinear form 2nd order Jacobi fields Tg Fy ^V ^t RCH ^V ^T ⁰ linear ODE tangentto ^Y ^g normalto ^y system V ^T ^N Ss K heparametriutin containinformation of 8 linearfunctionof aboutthe geometryof cnn.gg y int Conjugate points minimizing geodesics Recall Gauss Lemma LZr.IT ^I shot geodesics are ingeodesic length1energy minimizing normalword P Q what about the long geodesics i A related to normal saa.si fields conjugal failtobe pre6 P minimising Idea A geodesic will fail to be minimizing afterpassing the antipodalpt0ha it passes through ^a conjugate pt

Def² Let
$$
Y: [a,b] \rightarrow (M^n, g)
$$
 be a geodesic.
\nWe say that $Y(a) \& Y(b)$ are conjugate (along Y)
\nif \exists non-trivial Jacobi-field of $V(t)$ along Y st
\n $V(a) = 0 = V(b)$
\nFurthermore, we define the multiplicity
\na) the dimension of the vector space
\nof all such V above.

Remark: Since V^T is a linear function in t (times γ') Vanishing of V^T at end pts \Rightarrow $V^T \equiv 0$ (ie the V above must be normal to \mathcal{I}')

So. multiplicity $\leq n-1$

E.g.)
$$
(S', S_{round}) \subseteq R^{n+1}
$$

\n $\pi: [0, \pi] \rightarrow (S', S_{mod})$ great circle
\n $\pi: [0, \pi] \rightarrow (S', S_{mod})$ great circle
\n $\pi: [0, \pi] \rightarrow (S', S_{mod})$ great circle
\n $\pi: [0, \pi] \rightarrow (S', S_{mod})$ great circle
\n $\pi: [0, \pi] \rightarrow [0, \pi]$
\n π

$$
(2) V = V(0) \in T_P M
$$
 is a critical pt of exp_P

ie d(expp), is singular

Furthermore, multiplicity = $dim (ker (d(exp_p),))$.

Sketch of Proof": Let's start with (i).

By previous Prop. + hypothesis => expp is a local diffes. at each tv $f(x) \neq 6$ [0, 1] TpM (M,g) $\overbrace{\text{diffe}}^{\text{exp}}$

Ganss lemme => $L(\alpha)$ >> $L(\gamma)$

Now, let's assume the hypothesis in (ii).

 $u(t_0) = -v'(t_0)$
 $v(t_0) = -v'(t_0)$
 $u(t_0) = -v'(t_0)$
 $u(t_0) = 0$
 $u(t_0) = 0 = v(t_0)$
 $u(t_0) = 0 = v(t_0)$ $Y(t_0)$ $Y(t_1)$
 $Y(t_2) = Y(t_1)$
 $Y(t_2) = Y(t_2)$
 $Y(t_1) = Y(t_1)$

Claim: $\exists v.f. W(t)$ along 8, te [0.1], st $I(W,W) < 0$ (=) variation 80 correspondity to W satisfy the conclusion)

Let U(t) be a parallel v.f. along V. te Co. 1], st $\mathcal{U}(t_0) = -V(t_0)$ Fix a smooth cutoff fan $\varphi(t): C0.1] \to \mathbb{R}$ st $\begin{cases} \varphi(\omega) = \varphi(1) = 0 \\ \varphi(t_0) = 1 \end{cases}$ Define: For each $\alpha \in \mathbb{R}$. define (piecemic smooth) v.f. along γ $W = W(t) := \begin{cases} V(t) + \alpha \Psi(t) U(t) & \text{if } t \in [0, t_0] \\ \alpha \Psi(t) U(t) & \text{if } t \in [t_0, 1] \end{cases}$

$$
\begin{aligned}\n& \mathbf{I}(W,M) \\
&= \int_{0}^{t_{0}} \langle w, w' \rangle - \langle R(Y, w)Y, w \rangle dt \\
&+ \int_{t_{0}}^{4} \langle w, w' \rangle - \langle R(Y, w)Y, w \rangle dt \\
&+ \int_{t_{0}}^{4} \langle w, w' \rangle - \langle R(Y, w)Y, w \rangle dt \\
&= 0 \quad \forall y \text{ is } 3 \text{ such field } V(\mathbf{0}) = \mathbf{0} = V(\mathbf{t}_{0}) \\
&+ 2\alpha \int_{0}^{t_{0}} \langle v, w' \rangle - \langle R(Y, y)Y, w \rangle dt \\
&+ \alpha^{2} \int_{0}^{4} \langle v, w' \rangle dx - \langle R(Y, y)Y, w \rangle dx \\
&+ \alpha^{2} \int_{0}^{4} \langle w, w' \rangle dx + \alpha^{2} \mathbf{I}(\mathbf{V}(X, \mathbf{V}(X)) + \mathbf{V}(X, \mathbf{V}(X)) dx \\
&= 2\alpha \langle V, \mathbf{V}(X, \mathbf{V}) \rangle_{t_{0}}^{t_{0}} + \alpha^{2} \mathbf{I}(\mathbf{V}(X, \mathbf{V}(X)) < 0 \quad \text{for small } \alpha. \\
&- \|\mathbf{V}'(\mathbf{t}_{0})\|^{2} < 0\n\end{aligned}
$$

Riemannian manifold as a metric space (connected) (M°, g) : Riemannien manifold Define a distance on M as follow: for any p, g EM. $d(p, p) := inf \{L(Y) : X : [0, L] \to M \text{ piecewise much } \}$
st $Y(0) = p \cdot Y(1) = p$ FACT: (M, d) is a metric space.

Q: When is it completé as metric space?

In fact, there is a more differential-geometric notion of "Completeness".

Def": A Riem. mfd (M°.9) is geodesically complete if any geodesic on M can be infinitely extended on both sides lie defined on all of R).

Examples:

 (1) \mathbb{R}^2 $\{ \circ \}$ w. flat metric

Not complete as metric space NOT genderically complete

(3) $R_1^2 := \{(x, y) \in R^2 | y > 0\}$.

NOT (gasdesically) complete w.r.t. Sflat But (sendentals) complete with hyperbolic $S_{hyp} = \frac{1}{y^2} (dx^2 + dy^2)$

Hopf - Rinow Theorem: Let (M^n, g) be a smooth Riem mfd. THEN, the following are equivalent:

- (A) (M^n, g) is geodesically complete
- (M, d) is complete as a metric space
- 13) The exponential map at P, expp. is well-defined on the whole TpM, for SOME pGM.
- (4) The exponential map at p, expp, is well-defined on the whole TpM, for ALL PGM.

If any of the above holds, then V Pig ^E M 7 minimising geodesic 8 co ^I St. $\gamma(0) = \rho$. $\gamma(1) = \rho_0$ and $L(\gamma) = d(\rho, \rho_1)$.

Proof: Hw Exercise!